要闻

突破次元壁!新加坡国立发布GenXD:拿捏真实感3D、4D动态场景

新智元 2024-11-14 17:28:24
科技

在我们熟知的2D图像和视频生成技术蓬勃发展之际,3D和4D的世界依然是前沿科技的「无人区」。

面对真实场景中复杂的物体运动和视角变化,3D、4D生成一直面临数据和模型设计的双重瓶颈。然而,一项令人振奋的突破即将改变这一现状!

近日,新加坡国立大学(NUS)的研究人员提出了一种全新的生成框架——GenXD,不但能生成极具真实感的3D场景,还实现了从相机视角和物体图片中「生长」出逼真的4D动态场景。

项目主页:https://gen-x-d.github.io/

论文链接:https://arxiv.org/abs/2411.02319

代码链接:https://github.com/HeliosZhao/GenXD

GenXD能够实现单图片静态虚拟物体和场景的生成,实现高质量的3D内容创作:

GenXD也能够实现稀疏图片场景的重建,作为先验完善3D重建任务:

GenXD可以实现单图4D生成,生成任意时刻以及任意视角:

GenXD也能够助力视频插帧和可控视频生成,使用多图和相机路径作为控制信号:

CamVid-30K 4D数据构建

图1 数据标注

在动态3D任务的发展中,缺乏大规模4D场景数据一直是一个关键瓶颈。这不仅影响到4D生成、动态相机姿态估计等任务,也限制了可控视频生成等应用的进展。

为了解决这一难题,研究团队推出了一个高质量4D数据集——CamVid-30K,为未来的动态3D任务奠定了坚实基础。

CamVid-30K数据集的创建过程包括了一系列精细的步骤。首先,研究人员使用基于运动恢复结构(SfM)的方法来估计相机姿态。

SfM通过从多张图像的投影中重建3D结构,其中包括特征检测与提取、特征匹配、3D重建与相机姿态估计等关键步骤。

为了确保准确性,特征匹配仅限于静态场景部分,以避免动态物体误导相机的运动估计。

与之前方法不同的是,CamVid-30K使用了一种实例分割模型,将所有可能移动的像素进行分割。

相比早期的运动分割模块,该实例分割方法具备更强的泛化能力,特别是在复杂场景下更为适用。随后,利用改进的Particle-SfM对静态背景进行处理,最终生成精准的相机姿态和稀疏点云信息。

为进一步筛选出真正的动态场景,CamVid-30K还引入了运动强度指标来识别物体的真实运动。通过对齐深度投影,将动态物体在3D空间中进行重投影,以便检测位移,确保所包含的场景具有丰富的动态细节。这一过程确保了CamVid-30K不仅包含相机的运动信息,还捕捉到了物体本身的运动,使其成为高质量的4D数据资源。

模型架构

图2 整体框架

为了实现更自然的3D和4D场景生成,GenXD使用隐变量扩散模型(LDM),生成出符合相机视角和时间序列的场景图像。此外,GenXD提出多视角-时间层,将3D和时间信息有效解耦和融合。

对于相机视角信息,GenXD使用每个视角下的Plucker Ray作为控制信号。而对于单张或多张图像信息,GenXD使用掩码隐变量条件(mask latent conditioning)方式利用图像信息。

该方法在图像条件输入时具有三大优势:首先,无需对模型参数进行修改,便可以支持任意视角输入;其次,在多视图生成或视频生成过程中,无需固定条件帧的位置,确保了更大的灵活性;最后,省去了额外的条件嵌入,从而减少了模型参数量。这种设计不仅使得GenXD更高效,还可以处理复杂的多视角输入场景。

为了实现3D和4D的生成,GenXD引入了多视角-时间模块,分别对多视角信息和时间信息进行建模。通过设计多视角层与时间层,GenXD可以在3D生成时忽略时间信息,而在4D生成时引入多视角与时间信息的融合。

此外,模型采用了alpha融合策略,利用一个可学习的融合权重来控制4D生成的多视角和时间信息融合效果,从而实现更精准的动态场景生成。

此外,为了解决运动控制的问题,GenXD将CamVid-30K数据集中提供的运动强度引入多视角-时间ResBlock中。这样,模型可以准确地表达物体运动,从而在生成的场景中体现更自然的动态效果。

实验结果

GenXD在单视角4D生成,相机控制的视频生成,单视角3D生成以及少视角3D重建任务上均可用,并取得了很好的效果。

单视角4D生成

表1 单视角4D生成

对于单视角4D生成,GenXD首先生成4D视频,然后使用生成的视频优化4D高斯泼溅网络因此,与过去基于SDS的方法相比,GenXD有更快的优化速度,也有更好的效果。

相机控制的视频生成

表2 相机控制的视频生成

GenXD也与过去相机控制的运动生成方法进行了比较,过去的方法只能使用单张图片作为条件,无法实现视频插帧的功能。但单图条件下,GenXD超越过去的方法, 若使用多图作为条件,GenXD的效果可以得到更大的提升。

单视角3D生成

表3 单视角3D生成

图3 单视角3D生成

GenXD也在3D合成物体生成任务上进行了评估。在此任务上,GenXD首先生成360度视频,并利用此视频优化3D高斯泼溅网络。过去的方法在合成物体3D数据集上单独训练,而GenXD使用了不同分布的真实数据和4D数据。即使如此,GenXD也与过去的方法有相近的效果。此外,从可视化结果来看,GenXD没有过去方法常见的过度平滑和过度饱和问题。

少视角3D重建

表4 少视角3D重建

图4 少视角3D重建

GenXD可以使用多张图片作为条件,生成尺度一致的3D内容。因此,GenXD可以将生成的图片作为补充,提升少视角3D重建的效果。在此项目中,GenXD与两个重建网络(ZipNeRF和3DGS)相结合,极大地提升重建的效果。

运动控制

图5 运动控制

数据标注管线中提出了运动强度的概念,并且被引入到多视角-时间ResBlock里进行运动控制。图5可视化了运动控制的效果。使用同样的图片和相机条件,增大运动强度可以提高物体运动的速度,从而实现可控生成。

总结

GenXD模型和CamVid-30K数据集为3D和4D生成领域带来了全新突破。通过设计多视角-时间模块并引入掩码隐变量条件,GenXD不仅能够解耦相机和物体的运动,还可以支持任意数量的条件视图输入。

GenXD展示了在各类应用中的强大适应性,且在多项任务中达到了与现有方法相当或更优的表现。这一成果为未来的3D和4D生成任务奠定了坚实的基础,预示着虚拟世界构建与动态场景生成的无限可能。

本文来源:新智元

点击展开全文
打开APP,阅读体验更佳

网友评论

聚超值推荐

更多优惠

相关推荐

国家撒钱给补贴,今年双十一简直不要太爽。。。 科技要闻
国家撒钱给补贴,今年双十一简直不要太爽。。。
三年无冠,电竞熄火 科技要闻
三年无冠,电竞熄火
为了让中小开发者“吃上螃蟹”,华为狂撒上亿钞票。 科技要闻
为了让中小开发者“吃上螃蟹”,华为狂撒上亿钞票。
中国大学,抢着开“铁饭碗”专业 科技要闻
中国大学,抢着开“铁饭碗”专业
从今天起,ChatGPT入口就是chat.com! 科技要闻
从今天起,ChatGPT入口就是chat.com!
90后上海女生,成美国数学大奖首位女性华人得主!获评委陶哲轩盛赞 科技要闻
90后上海女生,成美国数学大奖首位女性华人得主!获评委陶哲轩盛赞
“霸总爱上阿姨”或迎终局,谁在瞄准老年人? 科技要闻
“霸总爱上阿姨”或迎终局,谁在瞄准老年人?
播放量超70亿,《APT.》为何全网爆红? 科技要闻
播放量超70亿,《APT.》为何全网爆红?
鸿蒙的“AI野望”:让AI融入操作系统,数亿补贴寻应用开发者 科技要闻
鸿蒙的“AI野望”:让AI融入操作系统,数亿补贴寻应用开发者
苹果的 MagSafe 接口,还有必要保留吗 科技要闻
苹果的 MagSafe 接口,还有必要保留吗
相关产品
取消