要闻

半年积累用户超200万,教育行业正在被AI重写

头号AI玩家 2024-07-11 16:47:37
科技

教育大模型,再成焦点。

在刚刚结束的世界人工智能大会(WAIC)上,教育展区热度居高不下,网易有道、学而思、猿力科技等展位挤满了带娃逛展的家长。

 

复盘今年教育行业的AI进程,又增添了不少新看点,正在从去年的技术探索转向大模型落地上,尝试让可商用迈入新的阶段

比如猿力科技亮相的教育全家桶,就涵盖了面向国内教育的飞象星球、猿编程、小猿学练机、海豚AI学,以及面向出海的CheckMath和LeapMath,释放的全是落地信息。

现在,猿辅导终于不用卖咖啡、羽绒服或者月子套餐了。

这也似乎验证了一件事,能让教育行业二次崛起的,恐怕还是它的传统艺能。

同时,教育领域的大模型落地也不仅在国内有动作,在海外呈现出的劲头也很强劲。比如在今年6月,一款名为Answer.AI的教育应用就曾霸榜北美教育TOP1,上线6个月就狂揽200万用户。

鉴于教育行业在推动大模型落地上遥遥领先——毕竟还有很多行业停留在通用大模型的旧思路上,不禁激起了“AI新榜”的探索兴趣。转眼2024过半,教育大模型落地进展几何了?不同企业之间在落地路径上有什么区别?以及AI到底能不能让教育变得更好?

教育大模型落地,走到哪了

2023年,被认为是教育大模型的元年。去年GPT-4o推出后,网易有道发布自研大模型“子曰”,学而思推出专注于数学的大模型MathGPT,作业帮上线自研银河大模型,科大讯飞对星火大模型连番升级,松鼠AI发布全球首款全学科智适应教育大模型等等。一时间,大模型成了教育企业的必争之地,引得各企业纷纷下注。

这波热潮过后,教育大模型似乎有了供过于求的迹象。因为市场最后只会选择一两个大模型作为技术基座,相比之下,应用层的市场空间则要比模型层大的多。

很多业界大佬都曾为上述观点站台,比如百度创始人李彦宏就多次强调AI原生应用。但这是否意味着大模型真的不重要了?答案显然不是,因为上层应用归根到底由底层技术决定

“AI新榜”梳理发现,许多教企在发布新应用时,往往伴随自家大模型的更新换代。比如网易有道在发布“子曰”1.0版本时,就同步推出了6款AI应用。在发布“子曰”2.0版本时,又更新了3款AI应用。

讯飞星火也是如此。自去年5月星火大模型发布以来,它的每一次升级都与教育密切相关。远的不说,就说6月27日发布星火4.0时,讯飞也展示了其在教育、医疗、商业等多领域的应用更新。

说完模型侧,咱们再来说说应用侧。

得益于教育行业的积极探索,国内也的确出现了许多基于教育大模型的应用。

比如在软件方面,网易有道就结合自己在英语方面的赛道优势,推出了Hi Echo和小P老师等应用,并通过将其打包进AI订阅服务,一季度狂赚会员费5000万;学而思推出数学答疑原生工具九章随时问,能针对学生提供个性化讲解,既懂启发也懂知识点;另外还有开篇提到的猿力科技,最近更是推出了AI应用全家桶。

硬件方面的动作也不少,比如小度科技基于文心大模型落地学习机Z30;科大讯飞基于星火大模型推出学习机T20;除此之外,还有作业帮、步步高等一众教企竞相布局AI学习机。据艾瑞咨询,2023年我国智能学习机市场规模达807亿元,预计2025年将超千亿,学习机的市场潜力可谓巨大。

不难发现,目前国内在教育大模型落地上的主流做法,就是用AI把解题、口语、批改、讲题等场景重做一遍。这种做法虽然不出错,但也说明AI只是头部教企用于提升原有业务的工具。

当然这种现象也不难理解。正如A16Z的联合创始人Marc Andreessen近日在文章里提到的那样,当公司开拓新业务时,三个重要元素的排序分别是市场、产品和团队。但如果这个市场足够大,比如教育市场,那么新产品只要基本可接受就能获得成功。

这也很好解释了阿里云创始人王坚在今年WAIC的那句话,大企业把AI看做工具的革命,小企业把AI看做革命的工具

除了上述提到的这些,教育大模型下一轮的落地方向是多模态。目前,教企也正尝试利用大模型生成文本、图像、视频、音频等不同形式的回复,模拟人类处理信息的方式。多模态能力将使大模型更了解学习者的需求,从而能提供更个性化的学习支持。

教育大模型落地,藏着哪些生意经?

可以说,教育行业正在被AI重写,一波新的创业潮已在路上

据多知网,2023年,我国新注册教育科技相关企业4万家,同比增加22.3%。2024年前5个月,我国新注册教育科技相关企业1.7万家,同比增加5.4%。

在这个趋势之下,“AI新榜”也来盘了盘教育大模型落地还藏着哪些商业机会。

1. 差异化是良性发展的前提

上文提到,当前各家企业的落地方向主要是在卷场景。但由于教育场景总共就这么多,同质化的问题很快就显现了出来。

想要寻求差异化,还能有哪些打法?让我们一起来看看。

比如网易有道借鉴了多邻国的做法,推出了AI订阅服务。据多位网友反映,它大概率借鉴了多邻国"游戏化"的机制,纳入AI订阅的Hi Echo和小P老师也都解锁了很多趣味场景,能让学生一边娱乐一边学习。

同样选择寓教于乐的还有科大讯飞推出的"小鹰爱学"。和有道相比,它不仅有学习换能量、奖牌、排名等趣味化的玩法,还在界面上选择了二次元偏爱的UI设计,首页甚至飘着各种弹幕。

除开游戏化玩法外,精耕内容也是可以考虑的方向之一。比如在竞争激烈的英语赛道,高途依旧敢于晚下场布局高途AI英语。而它之所以有勇气,恰恰在于它选择了"分教材"、"同步课本"的差异化打法,并把客群瞄准在低龄学生。据高途称,这也是国内首个采取"分教材学习"的智能学习方案,从没有人尝试过。

在本轮创业潮中,小企业也充满了想象力。有了AI的加持,小企业也不再跟着大企业亦步亦趋,而是实打实地在尝试"把AI作为革命的工具"。

今年5月,VisionFlow创始人刘夜在法国发布了全新产品Talkit,称这款工具能让用户沉浸式学外语。

打开这个App,用户将进入一个3D虚拟世界。在这里,每个用户都能选择选择一个专属数字分身,并能定制对话发生的场景,如餐厅、打车途中、医院等。通过模拟真实世界,它能为用户提供最好的语言环境,从而实现快乐学习。

目前,Talkit还没有在国内发行,但试想一下,如果你能进入这个元宇宙,还用得进去别家的口语外教吗?

2. “不出海,就出局”

受双减政策影响,本轮落地潮中也有很多企业把目光转向国外,真正做到了“墙内开花墙外香”。

在美国市场,国内表现最突出的两款应用分别是字节跳动旗下的Gauth和作业帮旗下的Question AI。据Sensor Tower数据,今年5月,这两款应用已先后登顶美国教育类榜首,下载量均为170万左右。

同样问鼎过榜首的还有Answer.AI,这款由初创团队打造的应用,自去年年末上线以来,6个月内迅速积累用户超200万,增长速度同样令人瞩目。

全科辅导产品之外,数学应用在海外的表现也很出色,比如Solvely.AI,它作为今年的出海新兵,也顺利进入了榜单前十。

值得一提的是,国内教育应用的高性价比是其海外扩张的关键。据Tech Crunch报道,美国家教费用非常昂贵,比如休斯顿一小时的家教费要60美元,在富庶的湾区,价格可能还要再翻两倍。相比之下,来自中国的教育应用订阅费才几十美元一年,相当于真人家教1小时的费用,非常实惠。

3. 既To C,也To B

除开上述偏向于C端的策略外,To B同样是商业版图不可或缺的一块。

由于大模型落地的成本比较高昂,为摊薄前期研发和运营的大幅投入,各家公司都在寻求规模效应,开始和G端、B端开展广泛合作。

相对而言,科技巨头在这方面存在一定优势。比如网易,其业务横跨游戏、音乐、工业和教育四大领域,客户资源相对较多,加上雄厚的资本积累,即便教育板块遇到挑战,其余稳健的业务依然能保证教育有资金布局前沿科技。

而教企的抗风险能力就会稍微逊色一些,它们虽然具有贴近C端的传统优势,但毕竟距离G端、B端稍远。

目前很多教企也正在向B端和G端发力。如猿力科技的“看云大模型”自5月15日完成备案后,就迅速与全国183个地区的学校建立了合作,覆盖了作业设计、课后服务和课堂讲评等多个教育场景,体现了其在教育领域的深度整合能力。

好未来也是如此,通过与传统学校合作试点,从而构建了更加紧密的教育生态链,提升了教育科技的整体竞争力。

科大讯飞更是迈出了国际化的步伐,不仅在新加坡设立了区域总部,还与当地62所中小学展开了合作试点,共同推进学生学习平台项目的建设。

总而言之,随着AI技术在教育领域的渗透加深,教育科技企业的生存发展越来越依赖与学校的合作深度和广度。

AI真的能让教育更好吗?

说到底,AI是一种算法技术,本质仍是冰冷的代码,而教育是与人打交道的,不是一串串冰冷的指令。

这就带来了一个核心问题:AI真的能否扮演好个性化导师的角色、实现因材施教吗?

鉴于描绘愿景的文章已屡见不鲜,“AI新榜”在此就不再重复,而是想从技术的角度讨论一下它该如何实现。在这里,我们重点参考了谷歌此前发布的技术报告《面向教育生成式人工智能的负责任开发:一种评估驱动的方法》。

首先,由于大模型本身不懂教学行为,它需要研究者提前输入具体的教学规范,比如谷歌技术报告就为AI提出了如下原则:

不要过早给出解决方案,鼓励学习者提出解决方案

使解释易于理解

鼓励学习者,夸赞学习者的进步,把错误当做进步的机会

识别学习者什么时候遇到了困难,主动与他们沟通

通过提问来确定学习者的掌握程度

逐步解释,并传授思维过程

但这种笼统的原则无法建立一套通用的教学策略,因为许多学科的教学研究非常分散,即便是在同一学科内,很多时候也强调不同的教学标准,几乎没有重叠。

为此, 研究者需要和多个群体展开合作,包括学生、教育工作者、科研工作者以及其他研究人员。

同时,大模型作为导师,还需要学会如何提问

目前如果不向大模型输入让其提问的指令,它只会默认生成回复。

为了解决这个问题,谷歌的研发者实验了两种方法,分别是提示和微调

提示是调整AI最流行的方法,它只需要开发者提前输入一套关于良好辅导行为的说明,比如“首先向学生介绍自己你是AI导师,你很擅长提问,每次只问一个问题......”,然后由AI来自行调整。

但提示存在很多局限性,因为有些具体的辅导行为很难用自然语言描述清楚,即便说得清楚,良好的辅导行为也不可能列举穷尽。

然后是微调。微调是指在大模型生成回复后,再由人类对它的表现进行反馈,从而强化学习。如果微调的操作由高级教师来执行,大模型就能捕捉到在有效教学中的一些直觉和推理,以至于能够推导出更广阔的教学空间。

成功的微调需要满足两个先决条件:足够多的高质量数据和衡量教学行为的客观标准。但不论满足与否,微调能带来的效果都和它的名字一样,即无法颠覆现有的教学模式,只能对其加以改进

同时,AI对学生的了解也是一个循序渐进的过程,这一点很像现实中与人相处。大模型需要不断对学生的回答进行打分,然后通过这些分数得出平均分,从而了解学生的真实水平和知识盲区。

当然这个操作代入学生视角会有点难受,毕竟谁会愿意有个老师每天在背后给自己打分。

还有一点,教育大模型也存在伦理风险

正如香港科技大学首席副校长郭毅在去年的WAIC教育论坛上说的那样,和人类先培养好奇心、再培养价值观、最后再系统学习各学科的教育顺序不同,机器学习是先输入数据,再被人类告知对错,最后才掌握价值观。

通过拟人化的交互系统,大模型已显著提升了用户信任与接受度。但在另一角度看来,这也可能导致用户对大模型产生情感依恋,比如使得未成年学生分享自己的敏感信息,或是对AI导师产生过度依赖。

所以研发团队更要对此进行安全微调,以保证AI说的每句话尽量都是合适的。

不过,正如猿力科技CTO杨元祖所说,大模型一定是教育未来发展的最大变量。虽然完美的AI导师还未出现,但它也许就在不远的未来。

本文来源:头号AI玩家

点击展开全文
打开APP,阅读体验更佳

网友评论

聚超值推荐

更多优惠

相关推荐

卷翻天的酒店,正在掏空中国人的钱包 科技要闻 商业
卷翻天的酒店,正在掏空中国人的钱包
这年头不会拍抖音,已经不配跑外卖了吗? 科技要闻 商业
这年头不会拍抖音,已经不配跑外卖了吗?
58亿美元售卖篮网,蔡崇信狠赚了一笔 科技要闻 商业
58亿美元售卖篮网,蔡崇信狠赚了一笔
2024年了,日本政府终于要放弃软盘了。。。 科技要闻 商业
2024年了,日本政府终于要放弃软盘了。。。
大厂网页版复活,老瓶装新酒是解药? 科技要闻 商业
大厂网页版复活,老瓶装新酒是解药?
微软“败走”中国,全球市值第一的巨头为何遭遇闭门羹? 科技要闻 商业
微软“败走”中国,全球市值第一的巨头为何遭遇闭门羹?
B站不能输的一战 科技要闻 商业
B站不能输的一战
Apple Watch10周年有王炸款?我看难~ 科技要闻 商业
Apple Watch10周年有王炸款?我看难~
老外的尴尬和狼狈里,藏着中国入境游的商机 科技要闻 商业
老外的尴尬和狼狈里,藏着中国入境游的商机
马斯克薪酬案还没完!律师又要价500亿? 科技要闻 商业
马斯克薪酬案还没完!律师又要价500亿?
相关产品
取消